Key concept: LaTeX provides powerful packages like
mhchem
for chemical equations and chemfig
for molecular structures. These packages handle subscripts, superscripts, arrows, and complex chemical notation automatically.Related topics: Mathematical notation | Scientific notation | Symbols and special charactersThe mhchem Package
Basic Chemical Formulas
Copy
\documentclass{article}
\usepackage[version=4]{mhchem}
\begin{document}
\section{Chemical Formulas}
% Simple formulas
Water: \ce{H2O}
Sulfuric acid: \ce{H2SO4}
Methane: \ce{CH4}
% Complex formulas with charges
Hydronium ion: \ce{H3O+}
Sulfate ion: \ce{SO4^2-}
Ammonium: \ce{NH4+}
% Isotopes
Carbon-14: \ce{^14C}
Uranium-235: \ce{^235U}
Deuterium oxide: \ce{^2H2O}
% States of matter
Solid sodium chloride: \ce{NaCl_{(s)}}
Aqueous hydrochloric acid: \ce{HCl_{(aq)}}
Gaseous carbon dioxide: \ce{CO2_{(g)}}
Liquid water: \ce{H2O_{(l)}}
\end{document}
Chemical Equations and Reactions
Copy
\documentclass{article}
\usepackage[version=4]{mhchem}
\begin{document}
\section{Chemical Reactions}
% Simple reaction
\ce{2H2 + O2 -> 2H2O}
% Reversible reaction
\ce{N2 + 3H2 <=> 2NH3}
% Equilibrium with conditions
\ce{CaCO3_{(s)} <=>[\Delta] CaO_{(s)} + CO2_{(g)}}
% Multiple steps
\begin{align}
\ce{CH4 + 2O2 &-> CO2 + 2H2O} \\
\ce{2H2 + O2 &-> 2H2O} \\
\ce{C + O2 &-> CO2}
\end{align}
\section{Complex Reactions}
% Precipitation reaction
\ce{AgNO3_{(aq)} + NaCl_{(aq)} -> AgCl_{(s)} v + NaNO3_{(aq)}}
% Acid-base reaction
\ce{HCl_{(aq)} + NaOH_{(aq)} -> NaCl_{(aq)} + H2O_{(l)}}
% Oxidation-reduction
\ce{Zn_{(s)} + Cu^2+_{(aq)} -> Zn^2+_{(aq)} + Cu_{(s)}}
% Organic reaction with mechanism
\ce{CH3CH2OH ->[H2SO4][\Delta] CH2=CH2 + H2O}
% Enzyme-catalyzed reaction
\ce{glucose + O2 ->[enzyme] CO2 + H2O + ATP}
\section{Reaction Mechanisms}
% Nucleophilic substitution
\ce{R-X + Nu^- -> R-Nu + X^-}
% Addition reaction
\ce{CH2=CH2 + HBr -> CH3CH2Br}
% Elimination reaction
\ce{CH3CH2Br + OH^- -> CH2=CH2 + Br^- + H2O}
\end{document}
Advanced Chemical Notation
Copy
\documentclass{article}
\usepackage[version=4]{mhchem}
\usepackage{amsmath}
\begin{document}
\section{Advanced Chemical Notation}
% Coordination compounds
Hexaamminecobalt(III) chloride: \ce{[Co(NH3)6]Cl3}
Potassium hexacyanoferrate(II): \ce{K4[Fe(CN)6]}
% Transition states
\ce{A + B ->[TS] P}
% Catalysts above arrows
\ce{benzene ->[AlCl3] methylbenzene}
\ce{ethene + H2 ->[Ni][\Delta] ethane}
% Multiple arrows
\ce{A ->[k1] B ->[k2] C}
\ce{reactants <=>[\ce{k_{forward}}][\ce{k_{reverse}}] products}
% Electron configurations
Ground state oxygen: \ce{[He] 2s^2 2p^4}
Excited state carbon: \ce{[He] 2s^1 2p^3}
\section{Thermodynamic Notation}
% Enthalpy changes
\ce{CH4_{(g)} + 2O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)}} \quad $\Delta H = -890$ kJ/mol
% Equilibrium expressions
\ce{N2_{(g)} + 3H2_{(g)} <=> 2NH3_{(g)}} \quad $K_c = \frac{[\ce{NH3}]^2}{[\ce{N2}][\ce{H2}]^3}$
% Rate expressions
Rate = $k[\ce{A}]^m[\ce{B}]^n$
\section{Biochemical Notation}
% Amino acids
Glycine: \ce{NH2CH2COOH}
Alanine: \ce{NH2CH(CH3)COOH}
% Phosphorylation
\ce{ATP + H2O -> ADP + Pi + energy}
% DNA bases
Adenine: \ce{C5H5N5}
Guanine: \ce{C5H5N5O}
\end{document}
Molecular Structures with chemfig
Basic Molecular Drawing
Copy
\documentclass{article}
\usepackage{chemfig}
\begin{document}
\section{Basic Molecular Structures}
% Simple molecules
Methane: \chemfig{C(-[1]H)(-[3]H)(-[5]H)(-[7]H)}
Water: \chemfig{H-O-H}
Ammonia: \chemfig{N(-[1]H)(-[5]H)(-[7]H)}
% Linear molecules
Ethane: \chemfig{H_3C-CH_3}
Propane: \chemfig{H_3C-CH_2-CH_3}
% Branched molecules
Isobutane: \chemfig{H_3C-CH(-[2]CH_3)-CH_3}
% Double bonds
Ethene: \chemfig{H_2C=CH_2}
Carbon dioxide: \chemfig{O=C=O}
% Triple bonds
Ethyne: \chemfig{HC~CH}
Hydrogen cyanide: \chemfig{H-C~N}
\section{Cyclic Structures}
% Cyclohexane
\chemfig{*6(------)}
% Benzene
\chemfig{*6(=-==-=)}
% Cyclopentane
\chemfig{*5(-----)}
% Substituted benzene
Toluene: \chemfig{*6(=-=(-CH_3)-=)}
Phenol: \chemfig{*6(=-=(-OH)-=)}
\end{document}
Complex Organic Structures
Copy
\documentclass{article}
\usepackage{chemfig}
\begin{document}
\section{Complex Organic Molecules}
% Glucose
Glucose: \chemfig{HO-[1,0.5,2]?<[7,0.7]OH>[1,0.7]?<[2,0.5]OH>[3,0.7]?<[4]OH>[4,0.7]?<[3,0.5]OH>[7,0.7]?(-[1,0.3]O-[7,0.3]?)}
% Caffeine
Caffeine: \chemfig{*6((-N*5(-(-CH_3)-N=-N(-CH_3)-))=N-=(-N(-CH_3))=*6(-(-=O)-N(-CH_3)-(-=O)-N=-=))}
% Cholesterol (simplified)
Cholesterol: \chemfig{*6((-*6(-----(-OH)))---(-*5(---(-*6(------))--))-(-(=)-(-[1])-([7]))---)}
\section{Functional Groups}
% Alcohol
Primary alcohol: \chemfig{R-CH_2-OH}
Secondary alcohol: \chemfig{R-CH(-[2]OH)-R'}
Tertiary alcohol: \chemfig{R-C(-[2]OH)(-[6]R')(-[7]R'')}
% Carbonyl compounds
Aldehyde: \chemfig{R-C(=[2]O)-H}
Ketone: \chemfig{R-C(=[2]O)-R'}
% Carboxylic acid derivatives
Carboxylic acid: \chemfig{R-C(=[2]O)-OH}
Ester: \chemfig{R-C(=[2]O)-O-R'}
Amide: \chemfig{R-C(=[2]O)-N(-[6]H)-H}
% Aromatic functional groups
Aniline: \chemfig{*6(=-=(-NH_2)-=)}
Benzoic acid: \chemfig{*6(=-=(-C(=[2]O)-OH)-=)}
\section{Stereochemistry}
% Wedge and dash bonds
Tetrahedral carbon: \chemfig{C(-[1,,,1]H)(-[3,,,2]Cl)(-[5]Br)(-[7]F)}
% Chair conformation
Cyclohexane chair: \chemfig{*6((-[2]H)(-[6]H)-(-[2]H)(-[6]H)-(-[2]H)(-[6]H)---)}
% Newman projection
Newman projection: \chemfig{*6((-H)(-H)(-H)-*6((-H)(-H)(-H)---)---)}
\end{document}
Reaction Schemes
Copy
\documentclass{article}
\usepackage{chemfig}
\usepackage[version=4]{mhchem}
\begin{document}
\section{Organic Reaction Schemes}
% SN2 reaction
\schemestart
\chemfig{H_3C-CH_2-Br}
\+
\chemfig{OH^{-}}
\arrow{->[SN2]}
\chemfig{H_3C-CH_2-OH}
\+
\chemfig{Br^{-}}
\schemestop
% Addition reaction
\schemestart
\chemfig{H_2C=CH_2}
\+
\chemfig{HBr}
\arrow{->}
\chemfig{H_3C-CH_2Br}
\schemestop
% Multistep synthesis
\schemestart
\chemfig{*6(=-=(-CH_3)-=)}
\arrow{->[KMnO_4][H^+, heat]}
\chemfig{*6(=-=(-C(=[2]O)-OH)-=)}
\arrow{->[SOCl_2]}
\chemfig{*6(=-=(-C(=[2]O)-Cl)-=)}
\arrow{->[NH_3]}
\chemfig{*6(=-=(-C(=[2]O)-NH_2)-=)}
\schemestop
\section{Biochemical Pathways}
% Glycolysis step
\schemestart
\chemfig{glucose}
\arrow{->[hexokinase][ATP, Mg^{2+}]}
\chemfig{glucose-6-phosphate}
\arrow{->[phosphoglucose isomerase]}
\chemfig{fructose-6-phosphate}
\schemestop
% Peptide bond formation
\schemestart
\chemfig{H_2N-CH(-[6]R_1)-C(=[2]O)-OH}
\+
\chemfig{H_2N-CH(-[6]R_2)-C(=[2]O)-OH}
\arrow{->[condensation][-H_2O]}
\chemfig{H_2N-CH(-[6]R_1)-C(=[2]O)-NH-CH(-[6]R_2)-C(=[2]O)-OH}
\schemestop
\section{Coordination Chemistry}
% Octahedral complex
Octahedral \ce{[Co(NH3)6]^3+}:
\chemfig{Co(-[0]NH_3)(-[60]NH_3)(-[120]NH_3)(-[180]NH_3)(-[240]NH_3)(-[300]NH_3)}
% Square planar complex
Square planar \ce{[PtCl4]^2-}:
\chemfig{Pt(-[0]Cl)(-[90]Cl)(-[180]Cl)(-[270]Cl)}
% Chelating ligand
EDTA complex:
\chemfig{(-[1]OOC-CH_2)_2N-CH_2-CH_2-N(-[7]CH_2-COO)_2}
\end{document}
Spectroscopy and Analytical Chemistry
NMR and IR Notation
Copy
\documentclass{article}
\usepackage[version=4]{mhchem}
\usepackage{siunitx}
\begin{document}
\section{NMR Spectroscopy}
% Chemical shifts
\ce{^1H} NMR (400 MHz, CDCl$_3$): $\delta$ 7.26 (s, 5H, Ph), 3.85 (s, 3H, OCH$_3$), 2.45 (t, 2H, CH$_2$)
\ce{^13C} NMR (100 MHz, CDCl$_3$): $\delta$ 170.2 (C=O), 128.5 (Ar-C), 55.2 (OCH$_3$), 34.1 (CH$_2$)
% Coupling constants
\ce{^1H} NMR: $\delta$ 6.95 (d, $J$ = 8.0 Hz, 2H), 4.12 (q, $J$ = 7.2 Hz, 2H)
% Two-dimensional NMR
COSY, HSQC, and HMBC correlations confirm the structure.
\section{IR Spectroscopy}
IR (KBr): $\tilde{\nu}$ = \SI{3300}{\per\centi\meter} (O-H stretch), \SI{1720}{\per\centi\meter} (C=O stretch), \SI{1600}{\per\centi\meter} (C=C stretch)
FT-IR (neat): \SI{2950}{\per\centi\meter} (C-H stretch), \SI{1735}{\per\centi\meter} (ester C=O), \SI{1250}{\per\centi\meter} (C-O stretch)
\section{Mass Spectrometry}
MS (EI, 70 eV): $m/z$ (\%) = 180 (M$^+$, 45), 152 (M$^+$ - CO, 100), 124 (M$^+$ - 2CO, 75)
HRMS (ESI): $m/z$ calculated for \ce{C10H12NO2} [M+H]$^+$ 178.0868, found 178.0865
\section{Elemental Analysis}
Anal. Calculated for \ce{C15H14N2O3}: C, 66.66; H, 5.22; N, 10.36. Found: C, 66.58; H, 5.18; N, 10.41.
\section{Crystallography}
Crystal data: \ce{C12H10N2O}, $M$ = 198.22, monoclinic, space group $P2_1/c$, $a$ = \SI{7.123}{\angstrom}, $b$ = \SI{15.456}{\angstrom}, $c$ = \SI{9.876}{\angstrom}, $\beta$ = 105.23°, $V$ = \SI{1045.2}{\angstrom\cubed}, $Z$ = 4.
\end{document}
Physical Chemistry Notation
Thermodynamics and Kinetics
Copy
\documentclass{article}
\usepackage[version=4]{mhchem}
\usepackage{amsmath}
\usepackage{siunitx}
\begin{document}
\section{Thermodynamics}
% Standard formation enthalpies
$\Delta_f H^\circ$ (\ce{H2O}, l) = \SI{-285.8}{\kilo\joule\per\mole}
$\Delta_f H^\circ$ (\ce{CO2}, g) = \SI{-393.5}{\kilo\joule\per\mole}
% Gibbs free energy
$\Delta G = \Delta H - T\Delta S$
For the reaction \ce{N2 + 3H2 <=> 2NH3}:
$\Delta G^\circ = -2 \times \SI{16.5}{\kilo\joule\per\mole} = \SI{-33.0}{\kilo\joule\per\mole}$
% Equilibrium constant
$K_p = \frac{P_{\ce{NH3}}^2}{P_{\ce{N2}} \cdot P_{\ce{H2}}^3}$
$\ln K = -\frac{\Delta G^\circ}{RT}$
\section{Chemical Kinetics}
% Rate laws
For \ce{A + B -> C}, the rate law is:
\[
\text{Rate} = k[\ce{A}]^m[\ce{B}]^n
\]
% Integrated rate laws
First order: $\ln[\ce{A}] = \ln[\ce{A}]_0 - kt$
Second order: $\frac{1}{[\ce{A}]} = \frac{1}{[\ce{A}]_0} + kt$
% Arrhenius equation
$k = A e^{-E_a/RT}$
$\ln k = \ln A - \frac{E_a}{RT}$
\section{Electrochemistry}
% Nernst equation
$E = E^\circ - \frac{RT}{nF} \ln Q$
At 298 K: $E = E^\circ - \frac{0.0592}{n} \log Q$
% Standard reduction potentials
\ce{Cu^2+ + 2e^- -> Cu} \quad $E^\circ = +\SI{0.34}{\volt}$
\ce{Zn^2+ + 2e^- -> Zn} \quad $E^\circ = -\SI{0.76}{\volt}$
% Cell notation
\ce{Zn | Zn^2+ (1 M) || Cu^2+ (1 M) | Cu}
$E_{\text{cell}}^\circ = E_{\text{cathode}}^\circ - E_{\text{anode}}^\circ = 0.34 - (-0.76) = \SI{1.10}{\volt}$
\section{Quantum Chemistry}
% Schrödinger equation
$\hat{H}\Psi = E\Psi$
% Hydrogen atom wavefunctions
$\Psi_{1s} = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$
% Molecular orbitals
For \ce{H2^+}: $\Psi_{\pm} = \frac{1}{\sqrt{2 \pm 2S}}(\phi_A \pm \phi_B)$
% Electronic configurations
\ce{C}: $1s^2 2s^2 2p^2$
\ce{Fe^3+}: $[\ce{Ar}] 3d^5$
\end{document}
Chemical Drawing Packages Comparison
Package Selection Guide
Copy
\documentclass{article}
\usepackage[version=4]{mhchem}
\usepackage{chemfig}
\usepackage{modiagram}
\begin{document}
\section{Package Comparison}
\begin{tabular}{|l|l|l|}
\hline
\textbf{Package} & \textbf{Best For} & \textbf{Examples} \\
\hline
mhchem & Chemical equations & \ce{H2SO4}, \ce{A + B -> C} \\
& Formulas with charges & \ce{NH4+}, \ce{SO4^2-} \\
& Reaction arrows & \ce{A <=> B} \\
\hline
chemfig & Molecular structures & Benzene rings, stereochemistry \\
& Organic molecules & Complex natural products \\
& Reaction schemes & Multi-step syntheses \\
\hline
modiagram & Molecular orbitals & MO diagrams \\
& Electronic structure & Energy level diagrams \\
\hline
\end{tabular}
\section{Molecular Orbital Diagrams}
% Simple MO diagram for H2
\begin{modiagram}[labels]
\atom[N]{left}{1s}
\atom[N]{right}{1s}
\molecule[N]{
1sigma = {0; pair}
}
\end{modiagram}
% More complex example for O2
\begin{modiagram}[labels]
\atom[O]{left}{2s, 2p = {;pair,up,up}}
\atom[O]{right}{2s, 2p = {;pair,up,up}}
\molecule[O2]{
2sigma = {0; pair},
2sigma* = {1.5; },
2piy = {-1; pair},
2piz = {-1; pair},
2pix = {0.5; up, up},
2pix* = {2; }
}
\end{modiagram}
\end{document}
Best Practices
Chemistry typesetting guidelines:
- Use mhchem for equations - Handles subscripts, superscripts, and arrows automatically
- Consistent notation - Follow IUPAC naming conventions
- Proper spacing - Let packages handle chemical spacing
- Clear structures - Use chemfig for complex molecules
- State symbols - Always indicate physical states when relevant
- Units and precision - Use siunitx for measurements and uncertainties
Professional Chemistry Document
Copy
\documentclass{article}
\usepackage[version=4]{mhchem}
\usepackage{chemfig}
\usepackage{siunitx}
\usepackage{amsmath}
\usepackage{booktabs}
% Custom commands for common notation
\newcommand{\conc}[1]{[\ce{#1}]}
\newcommand{\std}{\circ}
\begin{document}
\title{Synthesis and Characterization of Novel Organic Compounds}
\author{Chemistry Department}
\maketitle
\section{Experimental}
\subsection{Synthesis of Compound 1}
To a solution of \ce{benzaldehyde} (\SI{1.06}{\gram}, \SI{10.0}{\milli\mole}) in dry \ce{CH2Cl2} (\SI{20}{\milli\liter}) was added \ce{NaBH4} (\SI{0.38}{\gram}, \SI{10.0}{\milli\mole}) at \SI{0}{\celsius}. The reaction mixture was stirred for \SI{2}{\hour} at room temperature.
\schemestart
\chemfig{*6(=-=(-CHO)-=)}
\arrow{->[NaBH_4][CH_2Cl_2, rt]}
\chemfig{*6(=-=(-CH_2OH)-=)}
\schemestop
\subsection{Characterization}
\textbf{Compound 1}: Colorless oil. Yield: \SI{92}{\percent}.
\textbf{\ce{^1H} NMR} (400 MHz, CDCl$_3$): $\delta$ 7.38-7.28 (m, 5H, Ar-H), 4.68 (s, 2H, CH$_2$), 2.15 (br s, 1H, OH).
\textbf{\ce{^13C} NMR} (100 MHz, CDCl$_3$): $\delta$ 140.8, 128.4, 127.6, 126.9, 65.1.
\textbf{IR} (neat): $\tilde{\nu}$ = \SI{3330}{\per\centi\meter} (O-H), \SI{3030}{\per\centi\meter} (Ar-H), \SI{2924}{\per\centi\meter} (C-H), \SI{1496}{\per\centi\meter}, \SI{1454}{\per\centi\meter} (Ar).
\textbf{MS} (EI): $m/z$ (\%) = 108 (M$^+$, 25), 79 (100), 77 (85).
\section{Results and Discussion}
The reaction proceeded via a nucleophilic addition mechanism:
\begin{align}
\ce{C6H5CHO + BH4^- &-> C6H5CH2O^-BH3} \\
\ce{C6H5CH2O^-BH3 + H2O &-> C6H5CH2OH + B(OH)3 + H2}
\end{align}
The equilibrium constant for the hydride transfer is:
\[
K_{eq} = \frac{\conc{C6H5CH2O^-BH3}}{\conc{C6H5CHO}\conc{BH4^-}}
\]
Thermodynamic analysis shows $\Delta G\std = \SI{-15.2}{\kilo\joule\per\mole}$ for this transformation at \SI{298}{\kelvin}.
\end{document}
Quick Reference
Essential mhchem Commands
Command | Purpose | Example |
---|---|---|
\ce{formula} | Chemical formula | \ce{H2SO4} |
\ce{A + B -> C} | Chemical equation | \ce{2H2 + O2 -> 2H2O} |
\ce{A <=> B} | Equilibrium | \ce{N2 + 3H2 <=> 2NH3} |
\ce{^14C} | Isotope | \ce{^14C} |
\ce{SO4^2-} | Ion with charge | \ce{SO4^2-} |
Common Chemical Notation
Notation | LaTeX Code | Result |
---|---|---|
Subscript | \ce{H2O} | H₂O |
Superscript | \ce{Ca^2+} | Ca²⁺ |
State | \ce{NaCl_{(s)}} | NaCl₍ₛ₎ |
Arrow | \ce{->} | → |
Equilibrium | \ce{<=>} | ⇌ |
chemfig Basics
Element | Code | Description |
---|---|---|
Single bond | - | Single bond |
Double bond | = | Double bond |
Triple bond | ~ | Triple bond |
Angle | [angle] | Bond angle |
Ring | *n(bonds) | n-membered ring |
Next: Learn about Music notation and scores for musical typesetting, or explore Circuit diagrams for electrical schematics.